Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dichlorido(N,N-dimethylpropane-1,3-diamine- $\kappa^2 N$,N')zinc(II)

Juan-Lan Huang and Yun-Long Feng*

Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China

Correspondence e-mail: sky37@zjnu.cn

Received 29 March 2007; accepted 3 April 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.026; wR factor = 0.064; data-to-parameter ratio = 25.4.

The title compound, $[ZnCl_2(C_5N_2H_{14})]$, crystallizes with two discrete mononuclear complex molecules in the the asymmetric unit, with an intermolecular $Zn \cdots Zn$ separation of 5.271 (7) Å. Each Zn^{II} ion is in a distorted tetrahedral coordination geometry formed by two Cl atoms and two N atoms. In the crystal structure, molecules are connected by $N-H\cdots$ Cl hydrogen bonds into tetrameric clusters separated by normal van der Waals distances.

Related literature

For related literature, see: Johansson & Håkansson (2004).

Experimental

Crystal data

 $\begin{array}{l} \left[{\rm ZnCl_2(C_5H_{14}N_2)} \right] \\ M_r = 238.45 \\ {\rm Monoclinic}, \ P2_1/c \\ a = 12.033 \ (4) \ {\rm \mathring{A}} \\ b = 11.816 \ (4) \ {\rm \mathring{A}} \\ c = 15.113 \ (4) \ {\rm \mathring{A}} \\ \beta = 111.817 \ (3)^\circ \end{array}$

Data collection

Bruker APEXII area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.277, T_{max} = 0.494$ $V = 1995.0 (10) Å^{3}$ Z = 8 Mo K\alpha radiation \(\mu = 2.94 \text{ mm}^{-1}\) T = 293 (2) K 0.45 \times 0.38 \times 0.24 \text{ mm}\)

12998 measured reflections 4701 independent reflections 3625 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.022$ Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.064$ S = 0.994701 reflections 185 parameters H-atom parameters constrained
$$\begin{split} &\Delta\rho_{\rm max}=0.30~{\rm e}~{\rm \AA}^{-3}\\ &\Delta\rho_{\rm min}=-0.47~{\rm e}~{\rm \AA}^{-3} \end{split}$$

Table 1

Selected geometric parameters (Å, °).

Zn1-N1	2.0176 (16)	Zn2-N3	2.0251 (18)
Zn1-N2	2.0551 (16)	Zn2-N4	2.0754 (17)
Zn1-Cl2	2.2254 (7)	Zn2-Cl3	2.2236 (9)
Zn1-Cl1	2.2419 (7)	Zn2-Cl4	2.2319 (7)
N1-Zn1-N2	99.04 (6)	N3-Zn2-N4	96.32 (7)
N1-Zn1-Cl2	116.63 (5)	N3-Zn2-Cl3	107.75 (5)
N2-Zn1-Cl2	113.75 (5)	N4-Zn2-Cl3	110.16 (5)
N1-Zn1-Cl1	107.11 (6)	N3-Zn2-Cl4	116.08 (5)
N2-Zn1-Cl1	106.50 (5)	N4-Zn2-Cl4	107.89 (5)
Cl2-Zn1-Cl1	112.55 (3)	Cl3-Zn2-Cl4	116.68 (3)

Table 2		
Hydrogen-bond geon	ıetry (Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N3-H3C···Cl1 ⁱ	0.90	2.57	3.3106 (19)	140
$N3-H3D\cdots Cl2$	0.90	2.58	3.481 (2)	177
$N1-H1C\cdots Cl1^{i}$	0.90	2.90	3.5509 (19)	131
$N1 - H1D \cdots Cl4$	0.90	2.47	3.365 (2)	173

Symmetry code: (i) -x + 1, -y + 2, -z.

Data collection: *SMART* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2002); software used to prepare material for publication: *SHELXL97*.

This work was financially supported by the Foundation of Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2357).

References

- Bruker (2002). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Johansson, A. & Håkansson, M. (2004). Acta Cryst. E60, m955-m957.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, m1395 [doi:10.1107/S1600536807016583]

Dichlorido(*N*,*N*-dimethylpropane-1,3-diamine-*k*²*N*,*N*')zinc(II)

J.-L. Huang and Y.-L. Feng

Comment

Fig. 1 shows the two independent molecules in the asymmetric unit of the title compound. In each molecule, a Zn^{II} ion is coordinated by an *N*,*N*-dimethyl-1,3-propylenediamine ligand and two Cl atoms. The average Zn—N bond length is 2.0433 Å and the average Zn—Cl length is 2.2307 Å. Each Zn^{II} ion displays a distorted tetrahedral coordination geometry, as observed in the structure of dichloro (*N*,*N*,*N*-trimethylethylenediamine)zinc(II) (Johansson & Håkansson, 2004).

The six-membered chelate rings (Zn1/N1/C1/C2/C3/N2 and Zn2/N3/C6/C7/C8/N4) adopt chair-configurations. The dihedral angles between the N1/C1/C3/N2 plane and the C1/C2/C3 and N1/N2/Zn1 planes are 118.70 (4) and 137.46 (7)°, respectively. The dihedral angles between the N3/C6/C8/N4 plane and the C6/C7/C8 and N3/N4/Zn2/ planes are 119.89 (3) and 135.96 (7)°, respectively.

In the crystal structure, N—H…Cl hydrogen bonds link the molecules to form terameric clusters which are separated by the normal van der Waals distances (Fig. 2).

Experimental

To an ethanolic solution (15 ml) of biacetyl monoxime (0.101 g, 1.0 mmol), *N*,*N*-dimethylpropylenediamine (0.126 ml, 1.0 mmol) was added dropwise with stirring for 10 min. ZnCl₂ (0.136 g, 1 mmol) was then added and the mixture was refluxed for 3 h. A small amount of a precipitate appeared and this was filtered off. Colourless crystals of the title compound suitable for X-ray analysis were separated after 3 d (yield 78%).

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.97 Å and N—H = 0.90 Å, and with $U_{iso}(H) = 1.2U_{eq}(C,N)$,

and methyl groups were allowed to rotate to fit the electron density [methyl C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$].

Figures

Fig. 1. The asymmetric unit of (I), with displacement ellipsoids drawn at the 30% probability level and H atoms shown as spheres of arbitrary radii. Fig. 2. A partial packing plot for (I), with hydrogen bonds indicated by dashed lines.

Dichlorido(*N*,*N*-dimethylpropane-1,3-diamine- $\kappa^2 N$,*N*')zinc(II)

 $F_{000} = 976$

 $D_{\rm x} = 1.588 \text{ Mg m}^{-3}$ Mo *K* α radiation

Cell parameters from 3925 reflections

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 1.8 - 27.8^{\circ}$

 $\mu = 2.94 \text{ mm}^{-1}$

T = 293 (2) K

Block, colourless

 $0.45\times0.38\times0.24~mm$

Crystal data [ZnCl₂(C₅H₁₄N₂)] $M_r = 238.45$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 12.033 (4) Å b = 11.816 (4) Å c = 15.113 (4) Å $\beta = 111.817$ (3)° V = 1995.0 (10) Å³ Z = 8

Data collection

Bruker APEXII area-detector diffractometer	4701 independent reflections
Radiation source: fine-focus sealed tube	3625 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.022$
T = 293(2) K	$\theta_{\text{max}} = 27.8^{\circ}$
ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -15 \rightarrow 15$
$T_{\min} = 0.277, \ T_{\max} = 0.494$	$k = -14 \rightarrow 15$
12998 measured reflections	$l = -14 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.026$	H-atom parameters constrained
$wR(F^2) = 0.064$	$w = 1/[\sigma^2(F_o^2) + (0.0354P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.99	$(\Delta/\sigma)_{\rm max} = 0.001$
4701 reflections	$\Delta \rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$
185 parameters	$\Delta \rho_{min} = -0.47 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Zn1	0.411849 (19)	0.857901 (19)	0.046947 (15)	0.03807 (7)
Zn2	0.863280 (19)	0.73098 (2)	0.201793 (15)	0.04190 (8)
N1	0.49646 (15)	0.82785 (14)	-0.04360 (12)	0.0469 (4)
H1C	0.5200	0.8940	-0.0604	0.056*
H1D	0.5623	0.7859	-0.0138	0.056*
N2	0.33563 (13)	0.70150 (13)	0.04345 (11)	0.0390 (4)
N3	0.82874 (15)	0.89004 (15)	0.23443 (12)	0.0501 (4)
H3C	0.8433	0.9395	0.1947	0.060*
H3D	0.7509	0.8957	0.2262	0.060*
N4	0.84928 (14)	0.65333 (14)	0.32039 (12)	0.0452 (4)
Cl1	0.26121 (5)	0.97769 (5)	-0.02651 (4)	0.05660 (15)
Cl2	0.52522 (4)	0.91528 (5)	0.19295 (3)	0.05169 (14)
C13	1.05195 (5)	0.72640 (6)	0.21087 (5)	0.06741 (17)
Cl4	0.72616 (5)	0.65413 (5)	0.07219 (4)	0.05821 (15)
C1	0.4183 (2)	0.76772 (19)	-0.13034 (15)	0.0559 (6)
H1A	0.4627	0.7532	-0.1711	0.067*
H1B	0.3508	0.8157	-0.1652	0.067*
C2	0.3727 (2)	0.65750 (19)	-0.10731 (16)	0.0580 (6)
H2A	0.4410	0.6136	-0.0672	0.070*
H2B	0.3355	0.6158	-0.1663	0.070*
C3	0.28377 (18)	0.66473 (18)	-0.05791 (15)	0.0504 (5)
H3A	0.2208	0.7173	-0.0929	0.061*
H3B	0.2472	0.5910	-0.0608	0.061*
C4	0.42189 (19)	0.61736 (19)	0.10245 (16)	0.0558 (6)
H4A	0.3843	0.5444	0.0938	0.084*
H4B	0.4478	0.6388	0.1683	0.084*
H4C	0.4898	0.6141	0.0837	0.084*
C5	0.23779 (19)	0.7116 (2)	0.07969 (17)	0.0638 (7)
H5A	0.1981	0.6399	0.0739	0.096*
H5B	0.1814	0.7675	0.0433	0.096*
H5C	0.2702	0.7339	0.1455	0.096*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C6	0.9032 (2)	0.9189 (2)	0.33350 (16)	0.0621 (6)
H6A	0.8891	0.9972	0.3457	0.075*
H6B	0.9870	0.9112	0.3427	0.075*
C7	0.8754 (3)	0.8430 (2)	0.40354 (17)	0.0717 (7)
H7A	0.9134	0.8749	0.4668	0.086*
H7B	0.7896	0.8445	0.3882	0.086*
C8	0.9139 (2)	0.7215 (2)	0.40676 (16)	0.0632 (6)
H8A	0.9986	0.7201	0.4177	0.076*
H8B	0.9039	0.6854	0.4609	0.076*
C9	0.72181 (19)	0.6399 (2)	0.30731 (18)	0.0631 (6)
H9A	0.7164	0.6092	0.3644	0.095*
H9B	0.6835	0.5895	0.2550	0.095*
H9C	0.6829	0.7123	0.2940	0.095*
C10	0.9048 (2)	0.5398 (2)	0.3337 (2)	0.0721 (7)
H10A	0.8920	0.5019	0.3853	0.108*
H10B	0.9892	0.5473	0.3482	0.108*
H10C	0.8693	0.4965	0.2763	0.108*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.04375 (13)	0.03581 (13)	0.03561 (12)	-0.00228 (9)	0.01585 (10)	-0.00326 (9)
Zn2	0.03857 (13)	0.05028 (15)	0.04007 (13)	-0.00125 (10)	0.01835 (10)	-0.00226 (10)
N1	0.0553 (10)	0.0405 (10)	0.0537 (10)	-0.0088 (8)	0.0303 (8)	-0.0044 (8)
N2	0.0353 (8)	0.0411 (9)	0.0400 (9)	-0.0024 (7)	0.0133 (7)	0.0058 (7)
N3	0.0524 (10)	0.0493 (11)	0.0555 (11)	0.0074 (8)	0.0280 (9)	0.0109 (8)
N4	0.0376 (8)	0.0502 (11)	0.0465 (9)	0.0036 (7)	0.0140 (7)	0.0114 (8)
Cl1	0.0651 (3)	0.0514 (3)	0.0478 (3)	0.0160 (3)	0.0146 (2)	0.0050 (2)
Cl2	0.0492 (3)	0.0604 (3)	0.0407 (3)	-0.0019 (2)	0.0112 (2)	-0.0115 (2)
C13	0.0457 (3)	0.0857 (5)	0.0820 (4)	-0.0041 (3)	0.0366 (3)	-0.0138 (3)
Cl4	0.0550 (3)	0.0658 (4)	0.0502 (3)	-0.0061 (3)	0.0153 (2)	-0.0133 (3)
C1	0.0718 (15)	0.0623 (15)	0.0411 (12)	-0.0046 (12)	0.0294 (11)	-0.0081 (10)
C2	0.0743 (16)	0.0499 (14)	0.0501 (13)	-0.0081 (11)	0.0233 (12)	-0.0179 (10)
C3	0.0482 (12)	0.0461 (13)	0.0495 (12)	-0.0150 (9)	0.0095 (10)	-0.0061 (9)
C4	0.0513 (12)	0.0487 (14)	0.0602 (14)	0.0028 (10)	0.0123 (10)	0.0165 (10)
C5	0.0463 (12)	0.0861 (19)	0.0657 (15)	-0.0035 (12)	0.0285 (11)	0.0110 (13)
C6	0.0755 (16)	0.0502 (14)	0.0658 (15)	-0.0056 (12)	0.0321 (13)	-0.0141 (11)
C7	0.095 (2)	0.081 (2)	0.0464 (13)	-0.0072 (15)	0.0353 (13)	-0.0140 (12)
C8	0.0597 (14)	0.0829 (19)	0.0405 (12)	-0.0020 (13)	0.0110 (11)	0.0093 (11)
C9	0.0443 (12)	0.0783 (18)	0.0704 (16)	-0.0019 (11)	0.0256 (11)	0.0249 (13)
C10	0.0646 (15)	0.0552 (16)	0.096 (2)	0.0122 (12)	0.0285 (14)	0.0187 (14)

Geometric parameters (11,)	Geometric pa	rameters	(Å,	°)
-----------------------------	--------------	----------	-----	----

Zn1—N1	2.0176 (16)	C2—H2A	0.9700
Zn1—N2	2.0551 (16)	C2—H2B	0.9700
Zn1—Cl2	2.2254 (7)	С3—НЗА	0.9700
Zn1—Cl1	2.2419 (7)	С3—Н3В	0.9700
Zn2—N3	2.0251 (18)	C4—H4A	0.9600

Zn2—N4	2.0754 (17)	C4—H4B	0.9600
Zn2—C13	2.2236 (9)	C4—H4C	0.9600
Zn2—Cl4	2.2319 (7)	C5—H5A	0.9600
N1—C1	1.481 (3)	С5—Н5В	0.9600
N1—H1C	0.9000	С5—Н5С	0.9600
N1—H1D	0.9000	C6—C7	1.516 (3)
N2—C4	1.474 (2)	С6—Н6А	0.9700
N2—C5	1.476 (3)	С6—Н6В	0.9700
N2—C3	1.488 (2)	С7—С8	1.504 (4)
N3—C6	1.471 (3)	С7—Н7А	0.9700
N3—H3C	0.9000	С7—Н7В	0.9700
N3—H3D	0.9000	C8—H8A	0.9700
N4—C10	1.479 (3)	C8—H8B	0.9700
N4—C9	1.480 (3)	С9—Н9А	0.9600
N4—C8	1.485 (3)	С9—Н9В	0.9600
C1—C2	1.503 (3)	С9—Н9С	0.9600
C1—H1A	0.9700	C10—H10A	0.9600
C1—H1B	0.9700	C10—H10B	0.9600
C2—C3	1.518 (3)	C10—H10C	0.9600
N1—Zn1—N2	99.04 (6)	N2—C3—C2	114.85 (17)
N1—Zn1—Cl2	116.63 (5)	N2—C3—H3A	108.6
N2—Zn1—Cl2	113.75 (5)	С2—С3—НЗА	108.6
N1—Zn1—Cl1	107.11 (6)	N2—C3—H3B	108.6
N2—Zn1—Cl1	106.50 (5)	С2—С3—Н3В	108.6
Cl2—Zn1—Cl1	112.55 (3)	НЗА—СЗ—НЗВ	107.5
N3—Zn2—N4	96.32 (7)	N2—C4—H4A	109.5
N3—Zn2—Cl3	107.75 (5)	N2—C4—H4B	109.5
N4—Zn2—Cl3	110.16 (5)	H4A—C4—H4B	109.5
N3—Zn2—Cl4	116.08 (5)	N2—C4—H4C	109.5
N4—Zn2—Cl4	107.89 (5)	H4A—C4—H4C	109.5
Cl3—Zn2—Cl4	116.68 (3)	H4B—C4—H4C	109.5
C1—N1—Zn1	111.73 (13)	N2—C5—H5A	109.5
C1—N1—H1C	109.3	N2—C5—H5B	109.5
Zn1—N1—H1C	109.3	H5A—C5—H5B	109.5
C1—N1—H1D	109.3	N2—C5—H5C	109.5
Zn1—N1—H1D	109.3	H5A—C5—H5C	109.5
H1C—N1—H1D	107.9	H5B—C5—H5C	109.5
C4—N2—C5	108.02 (16)	N3—C6—C7	111.4 (2)
C4—N2—C3	110.94 (17)	N3—C6—H6A	109.3
C5—N2—C3	108.57 (16)	С7—С6—Н6А	109.3
C4—N2—Zn1	112.57 (13)	N3—C6—H6B	109.3
C5—N2—Zn1	109.13 (14)	С7—С6—Н6В	109.3
C3—N2—Zn1	107.54 (11)	Н6А—С6—Н6В	108.0
C6—N3—Zn2	111.15 (13)	C8—C7—C6	116.2 (2)
C6—N3—H3C	109.4	С8—С7—Н7А	108.2
Zn2—N3—H3C	109.4	С6—С7—Н7А	108.2
C6—N3—H3D	109.4	С8—С7—Н7В	108.2
Zn2—N3—H3D	109.4	С6—С7—Н7В	108.2
H3C—N3—H3D	108.0	H7A—C7—H7B	107.4

supplementary materials

C10—N4—C9	108.31 (18)	N4—C8—C7	115.82 (19)
C10—N4—C8	108.07 (17)	N4—C8—H8A	108.3
C9—N4—C8	110.72 (18)	С7—С8—Н8А	108.3
C10—N4—Zn2	109.96 (14)	N4—C8—H8B	108.3
C9—N4—Zn2	110.16 (12)	С7—С8—Н8В	108.3
C8—N4—Zn2	109.58 (13)	H8A—C8—H8B	107.4
N1—C1—C2	112.16 (18)	N4—C9—H9A	109.5
N1—C1—H1A	109.2	N4—C9—H9B	109.5
C2—C1—H1A	109.2	Н9А—С9—Н9В	109.5
N1—C1—H1B	109.2	N4—C9—H9C	109.5
C2—C1—H1B	109.2	Н9А—С9—Н9С	109.5
H1A—C1—H1B	107.9	Н9В—С9—Н9С	109.5
C1—C2—C3	116.71 (19)	N4—C10—H10A	109.5
C1—C2—H2A	108.1	N4—C10—H10B	109.5
С3—С2—Н2А	108.1	H10A—C10—H10B	109.5
C1—C2—H2B	108.1	N4-C10-H10C	109.5
С3—С2—Н2В	108.1	H10A-C10-H10C	109.5
H2A—C2—H2B	107.3	H10B-C10-H10C	109.5
N2—Zn1—N1—C1	45.48 (15)	N3—Zn2—N4—C9	77.48 (15)
N2—Zn1—N1—C1 Cl2—Zn1—N1—C1	45.48 (15) 167.90 (12)	N3—Zn2—N4—C9 Cl3—Zn2—N4—C9	77.48 (15) -170.96 (13)
N2—Zn1—N1—C1 Cl2—Zn1—N1—C1 Cl1—Zn1—N1—C1	45.48 (15) 167.90 (12) -65.00 (14)	N3—Zn2—N4—C9 Cl3—Zn2—N4—C9 Cl4—Zn2—N4—C9	77.48 (15) -170.96 (13) -42.56 (15)
N2—Zn1—N1—C1 Cl2—Zn1—N1—C1 Cl1—Zn1—N1—C1 N1—Zn1—N2—C4	45.48 (15) 167.90 (12) -65.00 (14) 78.10 (15)	N3—Zn2—N4—C9 Cl3—Zn2—N4—C9 Cl4—Zn2—N4—C9 N3—Zn2—N4—C8	77.48 (15) -170.96 (13) -42.56 (15) -44.57 (15)
N2—Zn1—N1—C1 Cl2—Zn1—N1—C1 Cl1—Zn1—N1—C1 N1—Zn1—N2—C4 Cl2—Zn1—N2—C4	45.48 (15) 167.90 (12) -65.00 (14) 78.10 (15) -46.37 (14)	N3—Zn2—N4—C9 Cl3—Zn2—N4—C9 Cl4—Zn2—N4—C9 N3—Zn2—N4—C8 Cl3—Zn2—N4—C8	77.48 (15) -170.96 (13) -42.56 (15) -44.57 (15) 66.99 (14)
N2—Zn1—N1—C1 Cl2—Zn1—N1—C1 Cl1—Zn1—N1—C1 N1—Zn1—N2—C4 Cl2—Zn1—N2—C4 Cl1—Zn1—N2—C4	45.48 (15) 167.90 (12) -65.00 (14) 78.10 (15) -46.37 (14) -170.94 (13)	N3—Zn2—N4—C9 Cl3—Zn2—N4—C9 Cl4—Zn2—N4—C9 N3—Zn2—N4—C8 Cl3—Zn2—N4—C8 Cl4—Zn2—N4—C8	77.48 (15) -170.96 (13) -42.56 (15) -44.57 (15) 66.99 (14) -164.61 (13)
N2—Zn1—N1—C1 Cl2—Zn1—N1—C1 Cl1—Zn1—N1—C1 N1—Zn1—N2—C4 Cl2—Zn1—N2—C4 Cl1—Zn1—N2—C4 N1—Zn1—N2—C4	45.48 (15) 167.90 (12) -65.00 (14) 78.10 (15) -46.37 (14) -170.94 (13) -161.99 (13)	N3—Zn2—N4—C9 Cl3—Zn2—N4—C9 Cl4—Zn2—N4—C9 N3—Zn2—N4—C8 Cl3—Zn2—N4—C8 Cl4—Zn2—N4—C8 Zn1—N1—C1—C2	77.48 (15) -170.96 (13) -42.56 (15) -44.57 (15) 66.99 (14) -164.61 (13) -57.4 (2)
N2—Zn1—N1—C1 Cl2—Zn1—N1—C1 Cl1—Zn1—N1—C1 N1—Zn1—N2—C4 Cl2—Zn1—N2—C4 Cl1—Zn1—N2—C4 N1—Zn1—N2—C5 Cl2—Zn1—N2—C5	45.48 (15) 167.90 (12) -65.00 (14) 78.10 (15) -46.37 (14) -170.94 (13) -161.99 (13) 73.54 (13)	N3—Zn2—N4—C9 Cl3—Zn2—N4—C9 Cl4—Zn2—N4—C9 N3—Zn2—N4—C8 Cl3—Zn2—N4—C8 Cl4—Zn2—N4—C8 Zn1—N1—C1—C2 N1—C1—C2—C3	77.48 (15) -170.96 (13) -42.56 (15) -44.57 (15) 66.99 (14) -164.61 (13) -57.4 (2) 68.8 (3)
N2—Zn1—N1—C1 Cl2—Zn1—N1—C1 Cl1—Zn1—N1—C1 N1—Zn1—N2—C4 Cl2—Zn1—N2—C4 Cl1—Zn1—N2—C4 N1—Zn1—N2—C5 Cl2—Zn1—N2—C5 Cl2—Zn1—N2—C5 Cl1—Zn1—N2—C5	45.48 (15) 167.90 (12) -65.00 (14) 78.10 (15) -46.37 (14) -170.94 (13) -161.99 (13) 73.54 (13) -51.02 (13)	N3—Zn2—N4—C9 Cl3—Zn2—N4—C9 Cl4—Zn2—N4—C9 N3—Zn2—N4—C8 Cl3—Zn2—N4—C8 Cl4—Zn2—N4—C8 Zn1—N1—C1—C2 N1—C1—C2—C3 C4—N2—C3—C2	77.48 (15) -170.96 (13) -42.56 (15) -44.57 (15) 66.99 (14) -164.61 (13) -57.4 (2) 68.8 (3) -65.1 (2)
N2—Zn1—N1—C1 Cl2—Zn1—N1—C1 Cl1—Zn1—N1—C1 N1—Zn1—N2—C4 Cl2—Zn1—N2—C4 Cl1—Zn1—N2—C4 N1—Zn1—N2—C5 Cl2—Zn1—N2—C5 Cl1—Zn1—N2—C5 N1—Zn1—N2—C3	45.48 (15) 167.90 (12) -65.00 (14) 78.10 (15) -46.37 (14) -170.94 (13) -161.99 (13) 73.54 (13) -51.02 (13) -44.40 (13)	N3—Zn2—N4—C9 Cl3—Zn2—N4—C9 Cl4—Zn2—N4—C9 N3—Zn2—N4—C8 Cl3—Zn2—N4—C8 Cl4—Zn2—N4—C8 Zn1—N1—C1—C2 N1—C1—C2—C3 C4—N2—C3—C2 C5—N2—C3—C2	77.48 (15) -170.96 (13) -42.56 (15) -44.57 (15) 66.99 (14) -164.61 (13) -57.4 (2) 68.8 (3) -65.1 (2) 176.39 (19)
N2—Zn1—N1—C1 Cl2—Zn1—N1—C1 Cl1—Zn1—N1—C1 N1—Zn1—N2—C4 Cl2—Zn1—N2—C4 Cl1—Zn1—N2—C4 N1—Zn1—N2—C5 Cl2—Zn1—N2—C5 Cl1—Zn1—N2—C5 N1—Zn1—N2—C3 Cl2—Zn1—N2—C3	45.48 (15) 167.90 (12) -65.00 (14) 78.10 (15) -46.37 (14) -170.94 (13) -161.99 (13) 73.54 (13) -51.02 (13) -44.40 (13) -168.87 (11)	N3—Zn2—N4—C9 Cl3—Zn2—N4—C9 Cl4—Zn2—N4—C9 N3—Zn2—N4—C8 Cl3—Zn2—N4—C8 Cl4—Zn2—N4—C8 Zn1—N1—C1—C2 N1—C1—C2—C3 C4—N2—C3—C2 Zn1—N2—C3—C2	77.48 (15) -170.96 (13) -42.56 (15) -44.57 (15) 66.99 (14) -164.61 (13) -57.4 (2) 68.8 (3) -65.1 (2) 176.39 (19) 58.4 (2)
N2—Zn1—N1—C1 Cl2—Zn1—N1—C1 Cl1—Zn1—N1—C1 N1—Zn1—N2—C4 Cl2—Zn1—N2—C4 Cl1—Zn1—N2—C4 N1—Zn1—N2—C5 Cl2—Zn1—N2—C5 Cl1—Zn1—N2—C5 N1—Zn1—N2—C3 Cl2—Zn1—N2—C3 Cl2—Zn1—N2—C3	45.48 (15) 167.90 (12) -65.00 (14) 78.10 (15) -46.37 (14) -170.94 (13) -161.99 (13) 73.54 (13) -51.02 (13) -44.40 (13) -168.87 (11) 66.57 (12)	N3—Zn2—N4—C9 Cl3—Zn2—N4—C9 Cl4—Zn2—N4—C9 N3—Zn2—N4—C8 Cl3—Zn2—N4—C8 Cl4—Zn2—N4—C8 Zn1—N1—C1—C2 N1—C1—C2—C3 C4—N2—C3—C2 C5—N2—C3—C2 Zn1—N2—C3—C2 C1—C2—C3—N2	77.48 (15) -170.96 (13) -42.56 (15) -44.57 (15) 66.99 (14) -164.61 (13) -57.4 (2) 68.8 (3) -65.1 (2) 176.39 (19) 58.4 (2) -71.8 (3)
N2—Zn1—N1—C1 Cl2—Zn1—N1—C1 Cl1—Zn1—N1—C1 N1—Zn1—N2—C4 Cl2—Zn1—N2—C4 Cl1—Zn1—N2—C4 N1—Zn1—N2—C5 Cl2—Zn1—N2—C5 Cl1—Zn1—N2—C5 N1—Zn1—N2—C3 Cl2—Zn1—N2—C3 Cl1—Zn1—N2—C3 N4—Zn2—N3—C6	$\begin{array}{c} 45.48 \ (15) \\ 167.90 \ (12) \\ -65.00 \ (14) \\ 78.10 \ (15) \\ -46.37 \ (14) \\ -170.94 \ (13) \\ -161.99 \ (13) \\ 73.54 \ (13) \\ -51.02 \ (13) \\ -44.40 \ (13) \\ -168.87 \ (11) \\ 66.57 \ (12) \\ 49.49 \ (15) \end{array}$	N3—Zn2—N4—C9 Cl3—Zn2—N4—C9 Cl4—Zn2—N4—C9 N3—Zn2—N4—C8 Cl3—Zn2—N4—C8 Cl4—Zn2—N4—C8 Zn1—N1—C1—C2 N1—C1—C2—C3 C4—N2—C3—C2 C5—N2—C3—C2 Zn1—N2—C3—C2 C1—C2—C3—N2 Zn2—N3—C6—C7	77.48 (15) -170.96 (13) -42.56 (15) -44.57 (15) 66.99 (14) -164.61 (13) -57.4 (2) 68.8 (3) -65.1 (2) 176.39 (19) 58.4 (2) -71.8 (3) -63.2 (2)
N2-Zn1-N1-C1 $Cl2-Zn1-N1-C1$ $Cl1-Zn1-N1-C1$ $N1-Zn1-N2-C4$ $Cl2-Zn1-N2-C4$ $Cl1-Zn1-N2-C4$ $N1-Zn1-N2-C5$ $Cl2-Zn1-N2-C5$ $Cl1-Zn1-N2-C5$ $N1-Zn1-N2-C3$ $Cl2-Zn1-N2-C3$ $Cl2-Zn1-N2-C3$ $Cl2-Zn1-N2-C3$ $Cl3-Zn2-N3-C6$ $Cl3-Zn2-N3-C6$	$\begin{array}{c} 45.48 \ (15) \\ 167.90 \ (12) \\ -65.00 \ (14) \\ 78.10 \ (15) \\ -46.37 \ (14) \\ -170.94 \ (13) \\ -161.99 \ (13) \\ 73.54 \ (13) \\ -51.02 \ (13) \\ -44.40 \ (13) \\ -168.87 \ (11) \\ 66.57 \ (12) \\ 49.49 \ (15) \\ -64.07 \ (15) \end{array}$	N3-Zn2-N4-C9 $C13-Zn2-N4-C9$ $C14-Zn2-N4-C9$ $N3-Zn2-N4-C8$ $C13-Zn2-N4-C8$ $C14-Zn2-N4-C8$ $Zn1-N1-C1-C2$ $N1-C1-C2-C3$ $C4-N2-C3-C2$ $C5-N2-C3-C2$ $Zn1-N2-C3-C2$ $C1-C2-C3-N2$ $Zn2-N3-C6-C7$ $N3-C6-C7-C8$	77.48 (15) -170.96 (13) -42.56 (15) -44.57 (15) 66.99 (14) -164.61 (13) -57.4 (2) 68.8 (3) -65.1 (2) 176.39 (19) 58.4 (2) -71.8 (3) -63.2 (2) 70.0 (3)
N2-Zn1-N1-C1 $Cl2-Zn1-N1-C1$ $Cl1-Zn1-N1-C1$ $N1-Zn1-N2-C4$ $Cl2-Zn1-N2-C4$ $Cl1-Zn1-N2-C4$ $N1-Zn1-N2-C5$ $Cl2-Zn1-N2-C5$ $Cl1-Zn1-N2-C5$ $N1-Zn1-N2-C3$ $Cl2-Zn1-N2-C3$ $Cl2-Zn1-N2-C3$ $Cl2-Zn1-N2-C3$ $Cl3-Zn2-N3-C6$ $Cl3-Zn2-N3-C6$ $Cl4-Zn2-N3-C6$	$\begin{array}{c} 45.48 \ (15) \\ 167.90 \ (12) \\ -65.00 \ (14) \\ 78.10 \ (15) \\ -46.37 \ (14) \\ -170.94 \ (13) \\ -161.99 \ (13) \\ 73.54 \ (13) \\ -51.02 \ (13) \\ -44.40 \ (13) \\ -168.87 \ (11) \\ 66.57 \ (12) \\ 49.49 \ (15) \\ -64.07 \ (15) \\ 162.96 \ (13) \end{array}$	N3-Zn2-N4-C9 $Cl3-Zn2-N4-C9$ $Cl4-Zn2-N4-C9$ $N3-Zn2-N4-C8$ $Cl3-Zn2-N4-C8$ $Cl4-Zn2-N4-C8$ $Zn1-N1-C1-C2$ $N1-C1-C2-C3$ $C4-N2-C3-C2$ $C5-N2-C3-C2$ $Zn1-N2-C3-C2$ $C1-C2-C3-N2$ $Zn2-N3-C6-C7$ $N3-C6-C7-C8$ $C10-N4-C8-C7$	77.48 (15) -170.96 (13) -42.56 (15) -44.57 (15) 66.99 (14) -164.61 (13) -57.4 (2) 68.8 (3) -65.1 (2) 176.39 (19) 58.4 (2) -71.8 (3) -63.2 (2) 70.0 (3) 175.9 (2)
N2-Zn1-N1-C1 $Cl2-Zn1-N1-C1$ $Cl1-Zn1-N1-C1$ $N1-Zn1-N2-C4$ $Cl2-Zn1-N2-C4$ $Cl1-Zn1-N2-C4$ $N1-Zn1-N2-C5$ $Cl2-Zn1-N2-C5$ $Cl1-Zn1-N2-C5$ $N1-Zn1-N2-C3$ $Cl2-Zn1-N2-C3$ $Cl2-Zn1-N2-C3$ $Cl1-Zn1-N2-C3$ $Cl3-Zn2-N3-C6$ $Cl3-Zn2-N3-C6$ $Cl4-Zn2-N3-C6$ $N3-Zn2-N4-C10$	$\begin{array}{c} 45.48(15)\\ 167.90(12)\\ -65.00(14)\\ 78.10(15)\\ -46.37(14)\\ -170.94(13)\\ -161.99(13)\\ 73.54(13)\\ -51.02(13)\\ -44.40(13)\\ -168.87(11)\\ 66.57(12)\\ 49.49(15)\\ -64.07(15)\\ 162.96(13)\\ -163.22(14)\\ \end{array}$	N3-Zn2-N4-C9 $C13-Zn2-N4-C9$ $C14-Zn2-N4-C9$ $N3-Zn2-N4-C8$ $C13-Zn2-N4-C8$ $C14-Zn2-N4-C8$ $Zn1-N1-C1-C2$ $N1-C1-C2-C3$ $C4-N2-C3-C2$ $C5-N2-C3-C2$ $C5-N2-C3-C2$ $C1-C2-C3-N2$ $Zn1-N2-C3-C2$ $C1-C2-C3-N2$ $Zn2-N3-C6-C7$ $N3-C6-C7-C8$ $C10-N4-C8-C7$ $C9-N4-C8-C7$	$\begin{array}{c} 77.48 \ (15) \\ -170.96 \ (13) \\ -42.56 \ (15) \\ -44.57 \ (15) \\ 66.99 \ (14) \\ -164.61 \ (13) \\ -57.4 \ (2) \\ 68.8 \ (3) \\ -65.1 \ (2) \\ 176.39 \ (19) \\ 58.4 \ (2) \\ -71.8 \ (3) \\ -63.2 \ (2) \\ 70.0 \ (3) \\ 175.9 \ (2) \\ -65.6 \ (3) \end{array}$
N2-Zn1-N1-C1 $Cl2-Zn1-N1-C1$ $Cl1-Zn1-N1-C1$ $N1-Zn1-N2-C4$ $Cl2-Zn1-N2-C4$ $Cl1-Zn1-N2-C5$ $Cl2-Zn1-N2-C5$ $Cl2-Zn1-N2-C5$ $Cl1-Zn1-N2-C3$ $Cl2-Zn1-N2-C3$ $Cl2-Zn1-N2-C3$ $Cl2-Zn1-N2-C3$ $Cl3-Zn2-N3-C6$ $Cl3-Zn2-N3-C6$ $Cl4-Zn2-N3-C6$ $N3-Zn2-N4-C10$ $Cl3-Zn2-N4-C10$	$\begin{array}{r} 45.48(15)\\ 167.90(12)\\ -65.00(14)\\ 78.10(15)\\ -46.37(14)\\ -170.94(13)\\ -161.99(13)\\ 73.54(13)\\ -51.02(13)\\ -44.40(13)\\ -168.87(11)\\ 66.57(12)\\ 49.49(15)\\ -64.07(15)\\ 162.96(13)\\ -163.22(14)\\ -51.66(15)\\ \end{array}$	N3-Zn2-N4-C9 $C13-Zn2-N4-C9$ $C14-Zn2-N4-C9$ $N3-Zn2-N4-C8$ $C13-Zn2-N4-C8$ $C14-Zn2-N4-C8$ $C14-Zn2-N4-C8$ $Zn1-N1-C1-C2$ $N1-C1-C2-C3$ $C4-N2-C3-C2$ $C5-N2-C3-C2$ $C1-C2-C3-N2$ $Zn2-N3-C6-C7$ $N3-C6-C7-C8$ $C10-N4-C8-C7$ $C9-N4-C8-C7$ $Zn2-N4-C8-C7$	77.48 (15) -170.96 (13) -42.56 (15) -44.57 (15) 66.99 (14) -164.61 (13) -57.4 (2) 68.8 (3) -65.1 (2) 176.39 (19) 58.4 (2) -71.8 (3) -63.2 (2) 70.0 (3) 175.9 (2) -65.6 (3) 56.1 (2)

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N3—H3C···Cl1 ⁱ	0.90	2.57	3.3106 (19)	140
N3—H3D····Cl2	0.90	2.58	3.481 (2)	177
N1—H1C···Cl1 ⁱ	0.90	2.90	3.5509 (19)	131
N1—H1D···Cl4	0.90	2.47	3.365 (2)	173
Symmetry codes: (i) $-x+1$, $-y+2$, $-z$.				

